Comments on “A note on multi-objective improved teaching-learning based optimization algorithm (MO-ITLBO)”
نویسندگان
چکیده
منابع مشابه
A note on multi-objective improved teaching-learning based optimization algorithm (MO-ITLBO)
Article history: Received September 2
متن کاملA multi-objective improved teaching-learning based optimization algorithm for unconstrained and constrained optimization problems
Article history: Received July 2 2013 Received in revised format September 7 2013 Accepted September 15 2013 Available online September 23 2013 The present work proposes a multi-objective improved teaching-learning based optimization (MO-ITLBO) algorithm for unconstrained and constrained multi-objective function optimization. The MO-ITLBO algorithm is the improved version of basic teaching-lear...
متن کاملImproved Teaching Learning Based Optimization (ITLBO) Algorithm For Solving Optimal Reactive Power Dispatch Problem
This paper presents an algorithm for solving the multi-objective reactive power dispatch problem in a power system. Modal analysis of the system is used for static voltage stability assessment. Loss minimization and maximization of voltage stability margin are taken as the objectives. Generator terminal voltages, reactive power generation of the capacitor banks and tap changing transformer sett...
متن کاملMOEICA: Enhanced multi-objective optimization based on imperialist competitive algorithm
In this paper, a multi-objective enhanced imperialist competitive algorithm (MOEICA) is presented. The main structures of the original ICA are employed while some novel approaches are also developed. Other than the non-dominated sorting and crowding distance methods which are used as the main tools for comparing and ranking solutions, an auxiliary comparison approach called fuzzy possession is ...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Industrial Engineering Computations
سال: 2017
ISSN: 1923-2926,1923-2934
DOI: 10.5267/j.ijiec.2016.11.002